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Abstract

Statistical power refers to the probability of rejecting a false null hypothesis (i.e.,
finding what the researcher wants to find). Power analysis allows researchers to
determine adequate sample size for designing studies with an optimal probability
for rejecting false null hypotheses. When conducted correctly, power analysis helps
researchers make informed decisions about sample size selection. Statistical power
analysis most commonly involves specifying statistic test criteria (type I error rate),
desired level of power, and the effect size expected in the population. This article
outlines the basic concepts relevant to statistical power, factors that influence power,
how to establish the different parameters for power analysis, and determination and
interpretation of the effect size estimates for power. I also address innovative work
such as the continued development of software resources for power analysis and pro-
tocols for designing for precision of confidence intervals (aka, accuracy in parameter
estimation). Finally, I outline understudied areas such as power analysis for designs
with multiple predictors, reporting and interpreting power analyses in published
work, designing for meaningfully sized effects, and power to detect multiple effects
in the same study.

INTRODUCTION

Many research findings involve application of inferential statistics. Inferen-
tial statistics refer to approaches used to draw conclusions about a population
based on a sample. In short, we infer what the population might reason-
ably look like based on a sample. At the core of these approaches is the null
hypothesis. The null hypothesis represents the assumption that there is no
effect in the population. Common forms of the null might be that there is no
correlation between two variables or that themeans for two groups are equal.
The primary decision made through use of inferential statistics is a deter-

mination of whether the null hypothesis is a reasonable estimate of what the
population looks like. More generally, we ask given what the sample looks
like, could the population reasonably reflect the relationship stated in the
null hypothesis? Inmaking such a determination, errors are possible because
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samples may or may not represent populations accurately. A common anal-
ogy is to a jury trial. The trial begins with the presumption of innocence and
a conviction requires proof beyond a reasonable doubt. The presumption of
innocence is conceptually similar to the null hypothesis. A guilty decision
requiring proof beyond a reasonable doubt means that given the evidence, it
seems unlikely that the defendant is innocent.
As in a jury trial, hypothesis testing conclusions may be in error. Two pos-

sible errors exist. Falsely rejecting a true null hypothesis (the equivalent of
a false conviction) and failing to reject a false null hypothesis (the equiva-
lent of failing to convict a guilty defendant). Continuing the jury analogy,
researchers usually take the role of the prosecution. They believe the defen-
dant is guilty (i.e., the null hypothesis is false) and seek a conviction (i.e.,
rejection of the null hypothesis). Statistical power reflects a study’s ability
to reject the null. Power analysis maximizes the researcher’s ability to attain
that goal.
When researchers conduct power analysis, the purpose is usually to

determine the sample size required to achieve a specified level of power. A
research study designed for high power is more likely to find a statistically
significant result (i.e., reject the null hypothesis) if the null hypothesis is in
fact false than in a study with lower power.

NULL HYPOTHESIS SIGNIFICANCE TESTING TERMINOLOGY AND REVIEW

To understand power, a review of null hypothesis significance testing
(NHST) is useful. NHST focuses on the probability of a sample result given
a specific assumption about the population. In NHST, the core assumption
about the population is the null hypothesis (e.g., population correlation is 0)
and the observed result is what the sample produces (e.g., sample correlation
of 0.40). Common statistical tests such as Chi-square, the t-test, and ANOVA
determine how likely the sample result (or a more extreme sample result)
would be if the null hypothesis were true. This probability is compared to a
set criterion commonly called the alpha or type I error level. The type I error
rate is the probability of a false rejection of a null hypothesis the researcher
is willing to accept. A common criteria in the behavioral sciences is a type I
error rate of 0.05. Under this criterion, a result that would occur less than 5%
of the time when the null is true would lead to rejection of the null.
Table 1 summarizes decisions about null hypotheses and compares them

to what is true for the data (“Reality”). Two errors exist. A type I or 𝛼 error
reflects rejecting a true null hypothesis. Researchers control this probability
by setting a value for it (e.g., use a type I rate of 0.05). Type II or 𝛽 errors reflect
failure to reject a false null hypothesis. Power reflects the probability of reject-
ing a false null hypothesis (one minus the type II error rate). Type II errors
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Table 1
Null Hypothesis Testing Decisions and Errors

Reality

Null hypothesis is true Null hypothesis is false

Statistical
decision

Fail to reject
null

Correct decision (1−𝛼) Incorrect decision
(type II or 𝛽 error)

Reject null Incorrect decision (type
I or 𝛼 error)

Correct decision
(1−𝛽 or power)

are far more difficult to control than type I errors, as they are the product of
several influences (see section onWhat Impacts Power). For readers wanting
a more complete overview of NHST, most introductory statistics texts (e.g.,
Howell, 2011) provide considerable discussion of these topics.

A BRIEF HISTORY OF STATISTICAL POWER

Statistical power analysis came to prominence with Jacob Cohen’s seminal
work on the topic (e.g., Cohen, 1988). Since that time, an extensive literature
and several commercial software and freeware packages focused on power
and sample size determination (e.g., PASS, nQuery, Sample Power, G*Power)
emerged. In recognition of the important role of power, grant applications
often require or encourage statistical power analysis as do influential style
manuals (e.g., American Psychological Association). Despite these advances
and encouragements, surveys across numerous fields suggest that lowpower
is common in published work (e.g., Maddock & Rossi, 2001). In the present
chapter, I review some of the basic issues in power analysis, address factors
that promote underpowered research, provide suggestions formore effective
power analyses, examine recent advances in power analysis, and directions
for the future.

FOUNDATIONAL RESEARCH

WHAT IMPACTS POWER (AND TYPE II ERROR)?

The primary influences on power are effect size, type I error (𝛼), and sample
size. Effect size reflects the expected size of a relationship in the population.
There are numerous ways to estimate effect size; however, the most common
measures are the correlation coefficient and Cohen’s d (difference between
twomeans divided by standard deviation). In general, the correlation ismost
common when expressing relationships between two continuously scaled
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variables and the d statistic for discussing differences between two groups.
Other estimates include 𝜂2 and 𝜔2 (both common for ANOVA designs), R2

(common for regression), and Cramer’s V or 𝜑 (common for Chi-squared
designs). Regardless of the estimate of effect size, larger effect sizes produce
greater power. Larger effects correspond to situations where the value for
the statistic of interest is extreme compared to the value specified in the null
hypothesis (i.e., no effect).
Type I error reflects a rate the researcher iswilling to accept for falsely reject-

ing true null hypotheses (often 0.05 or 0.01). Accepting a higher type I error
rate (e.g., 0.05 instead of 0.01) increases power as it makes it easier to reject
the null hypothesis. Although increasing type I rates improve power, by con-
vention researchers rarely go above 0.05.
Sample size influences power in a simple manner. Larger samples provide

greater power. If the null hypothesis is, in fact, false, a larger sample size is
more likely to allow for rejection.
Power analysis most typically involves specifying type I error, effect size,

and desired power to find a required sample size. Specification of desired
power (often 0.80 or 0.90) and type I error rate is straightforward. Effect size
determination is not as easy. The effect size is “generally unknown and dif-
ficult to guess” and requires consideration of a wide range of factors such
as strength of manipulation of variables, variability in dependent measures,
and a meaningful magnitude of relationships (Lipsey, 1990, p. 47). Although
complicated, effect size determination is likely the most important decision
made in power analysis.

EFFECT SIZE DETERMINATION

When we discuss effect size for power analysis, we are estimating what the
population actually looks like. Of course, there is no way to know what the
population looks like for sure. There are common standards for power (e.g.,
0.80 or 0.90) and type I error rates (0.05 or 0.01), but there is no easy way to
figure out what sort of effect size to expect for your study. Effect size estima-
tion for power analysis requires careful consideration as this value influences
the outcome of the power analysis more than any other decision. The more
thought put into this estimate, the better the analysis.

Small, Medium, or Large Effects. Jacob Cohen’s seminal work introduced con-
cepts of effect size and power to several generations of researchers. In this
work, Cohen provided numerous tables organized around finding sample
size given desired power, effect size, and type I error. Later work simplified
these tables to focus on small,medium, and large effects (and the sample sizes
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needed to detect each) rather than exact effect size values. This work greatly
advanced statistical power analysis and greatly increased the researcher’s
ability to address power. However, an unintended consequence of the work
is that it appears to foster reliance on use of small, medium, and large effect
size distinctions. Reflecting this, most empirical articles that report power
analyses include a statement such as “a sample of 64 participants yields 80%
power to detect a medium effect.”
I believe that the small, medium, large distinction should be discarded.

First, effect size measures combine two important pieces of information, size
of difference between groups (or strength of association), and the precision
of the estimate. Lenth (2000) provides a useful example that shows why con-
sidering differences and precision separately is valuable. In the example, two
studies produce the same effect size (amedium effect in this case). In the first,
a test detects a difference of about 1 mm between groups using an imprecise
instrument (s = 1.9 mm). The second case involves a more precise measure-
ment (s = 0.7 mm) and a within-subjects design. The second test allows for
detection of means differences of around 0.20 mm. Both tests involve the
same effect size but the second test is much more sensitive to the size of the
differences. The focus on effect size may obscure important relationships.
Another pervasive issuewith the use of small, medium, and large effect size

distinctions is that their selection often fails to correspond to careful thought
about the research problem. When I consult with researchers on power anal-
ysis, most tell me they designed for amedium effect (or a large effect) but few
can tell me why they chose that effect size. It appears that these “shirt size”
distinctions foster reliance on arbitrarily selected effect sizes. When effect
sizes used in power analyses are arbitrary, the corresponding sample size
estimates are meaningless.

CHOOSING HOW MUCH POWER

The choice of how much power is adequate for the research design usu-
ally reflects a combination of research and practical concerns. The primary
research concern is the cost of making a type II error. For example, if a treat-
ment were very expensive to develop, the cost of failing to reject the null
hypothesis (i.e., having no evidence for effectiveness) would be high. In a
case such as this, designing for considerable power (e.g., 0.95) would min-
imize the chance of such an error. This would likely come at the cost of a
very large sample. In contrast, an experiment examining a more trivial rela-
tionship might reasonably settle on a more moderate level of power (e.g.,
0.80).
In psychological research, there appears to be an unofficial standard of

0.80 for power. At first blush, this might seem low as it means accepting



6 EMERGING TRENDS IN THE SOCIAL AND BEHAVIORAL SCIENCES

a 20% chance of failing to reject false null hypotheses. The 0.80 criteria,
however, reflects practical concerns over the optimal balance of sample size
requirements and power. Generally, increasing power reflects consistent
increase of about one-quarter of the sample size for moving from 0.5 to
0.6, 0.6 to 0.7, and 0.7 to 0.8. However, moving from 0.8 to 0.9 requires an
increase of around one-third of the sample size. Getting from 0.9 to 0.95
requires another one-quarter increase. For example, if a sample size of 100
produced power= 0.50, then it would take roughly 25% more cases (25) to
produce power= 0.60 (a total of 125 cases). Moving from 0.60 to 0.70 would
require another 25% jump (an additional 31 cases for a total of 156) and
moving from 0.70 to 0.80 reflects addition of 39 more cases (total cases 195).
To get to power= 0.90, sample size must increase by about 64 (total cases =
258; a 33% increase in cases rather than 25%). This suggests that power of
0.80 provides the best balance between sample size requirements and power.

WHEN TO CONDUCT POWER ANALYSIS

Power analyses should be conducted before data collection. Power analysis is
an a priori venture that allows researchers to make informed decisions about
sample size before beginning their work. In some cases, researchers do not
have control over sample size (e.g., archival work). In those situations, it is
reasonable to conduct power analyses that indicate the power to detect effects
of various size (e.g., “the sample allows us 80% power to detect effects as
small as d = 0.25) but this should not be presented as a justification for the
sample size, only as information about limitations of conclusions drawn from
the data.
Researchers should not conduct power analyses after completion of data

collection. Some statistical packages (e.g., SPSS) provide computation of “ob-
served power” based on samples. A commonmisuse of such values is found
in statements such as “we failed to reject the null hypothesis; however, power
for detecting effect was low, suggesting that a larger sample would allow us
to support predictions.” This statement is flawed.Any test that does not reach
statistical significance (when the null is false) is underpowered. In fact, the
probability produced by significance tests relates inversely to power. If your
significance test probability is high, power will be low.

CUTTING-EDGE WORK

SOFTWARE ADVANCES

Early work provided numerous tables for determining statistical power, but
power analyses at present are primarily software based. There are several
commercial programs such as PASS (Power Analysis and Sample Size),
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nQuery, and Sample Power. In addition, two freeware packages, G*Power
and PiFace, provide an excellent array of analyses. R packages such as
Pwr provide a range of analyses for simple designs and there are several
packages addressing power for complex approaches (e.g., power Mediation,
long power). In addition, the free Optimal Design package addresses power
and sample size selection for multilevel models (aka hierarchical linear
models). Although these resources provide accurate power analyses for
many designs, it is important to recognize that solutions provide by software
are only as good as the information provided by the researcher. For example,
if the researcher provides arbitrary effect size values, the resultant sample
size estimates will reflect that arbitrary decision.

PRECISION ANALYSIS/ACCURACY IN PARAMETER ESTIMATION

Precision analysis, also known as accuracy in parameter estimation, deter-
mines sample sizes necessary to produce a confidence interval of a specified
width. A confidence interval is an estimate of what the population reason-
ably might look like given our sample results. These intervals may be very
wide (i.e., imprecise) or narrow (i.e., precise).
This approach fits with recent calls to focus on confidence intervals

either in conjunction with traditional significance tests or in place of such
tests. Recently developed approaches determine sample size requirements
based on the desired precision of results (i.e., confidence interval width).
The MBESS package for R provides an impressive array of protocols for
precision for most statistical values (Kelley, 2007).

DIRECTIONS FOR THE FUTURE

POWER ANALYSIS FOR COMPLEX RESEARCH DESIGNS

Despite software advances, conducting power analysis for common, but
complex research designs in the behavioral sciences is not well explicated.
Take, for example, the case of a power analysis in multiple regression.
The most common hypothesis tests for multiple regression focus on the
squared multiple correlation (R2; either for a model or for the addition of
variables) and regression coefficients (aka, slope, b, beta). R2 refers to the
variance explained by all of the predictors in the model (or a specific set
of predictors). The null hypotheses is that R2 is 0.00 in the population (i.e.,
the predictors do not relate to the criterion variable). Regression coefficients
reflect the variance uniquely explained by a predictor. That is, what a specific
predictor explains that the others cannot. Each predictor’s coefficient has
a null hypothesis attached to it. The null in this case is that the individual
predictor does not uniquely explain the dependent variable. I use multiple
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regression as an example, but the general issues discussed are applicable to
any analyses that employ multiple predictor variables.
Power analyses for R2, in terms of models and change, are handled well

by many applications (e.g., powerreg command in STATA, proc power in
SAS, G*Power). R2 values are straightforward to address, requiring only
information about the proportion of explained variance and the number of
predictors.
The calculation of power for a coefficient is more complex. Power for coeffi-

cients is a function of both their relationship to the criterionmeasure and their
relationships with each other (i.e., correlation with other predictors in the
model). Power decreases as a predictor’s overlap with the other predictors
increases. For the same study, power analyses for R2 and coefficients usually
provide different sample size estimates (generally, the R2 requires the small-
est sample size, particularly when there are many predictors). In many cases,
researchers are interested in detecting significant effects for coefficients and
R2. With those goals in mind, it is important to choose a sample size based
on power analyses that reflect all of the effects of interest.
Approaches exist for accurately estimating individual coefficient power for

designswithmultiple predictors. However, most of these approaches require
complex inputs such as partial R2 (G*Power) or variance inflation factors
(PiFace). These values require extensive calculations to avoid estimation
errors. I expect most researchers would be hard pressed to derive reasonable
estimates of these values. Aberson (2010) presents an alternative wherein an
approach utilizing only zero-order correlations between variables allows for
accurate power analyses for designs with multiple predictors. This approach
allows for estimation of multiple forms of power within the same analysis
(e.g., power for two coefficients and R2 model). Continued development of
user-friendly procedures for dealing with complex designs is an important
direction for the future.

A FOCUS ON DESIGNING AROUND MEANINGFULLY SIZED EFFECTS

Instead of choosing from small, medium, or large effects or making other
arbitrary choices about effect size, I recommend designing power analyses
to detect the smallest effect that is practically meaningful. This is often not
entirely obvious, particularly in basic research area. For example, when
designing an intervention or similar study, the researcher might ask, “how
much impact does the intervention need to make to justify the cost? A
classic example from Rosenthal (1995) addresses the effectiveness of aspirin
therapy on the reduction of heart attacks. In that study, the researchers
found a result so compelling that it led them to terminate their project early,
as the findings were so clear that people assigned to take aspirin were less
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likely to suffer a heart attack than those taking a placebo. The effect size in
this study was r= 0.034. In the context of this study, what does that effect
size mean? This effect is well below the “small” effect criteria for r (0.10).
Nonetheless, this size of an effect reflects a 3.4% decrease in heart attacks.
This represents a substantial health benefit. Turning to the cost of such
an intervention, aspirin is not only widely available but also inexpensive.
Turning the example around and thinking about designing for a study of the
effectiveness of a similar therapy, the answer to the question regarding how
much impact justifies cost would likely be that even aminimal impact would
justify the cost of aspirin treatment. This means we would need to budget
for a very large sample to detect effects. As a twist on this example, now
imagine we were interested in the effectiveness of an expensive medicine
to reduce heart attacks (e.g., a cost of $50 per daily dose). Given the cost of
the drug, in this case we might require a larger reduction in heart attacks
to term the drug “effective.” For many research questions, clear benefits of
this nature may not be obvious. However, thinking deeply about different
potential outcomes in terms of the size of different effects improves decision
making in conducting power analyses.
When cost–benefit analyses are not relevant, I suggest extensive investiga-

tion of published literature in your specific area or similar areas. This is a
better approach than arbitrarily choosing effect size but there are some prob-
lemswith this strategy. In linewith earlier discussions, this approachdoes not
address if effect sizes in previous studies reflect meaningful outcomes but it
does give a sense of what researchers doing similar work tend to find. Prob-
lematically, published work tends to favor larger effects (i.e., those that were
statistically significant). With increasing skepticism over selective exclusion
of nonsignificant replications in multistudy papers (e.g., Francis, 2012), it is
important to look to effect sizes from published studies with a critical eye. To
address these concerns, a good use of this approach would derive estimates
from multiple studies conducted by different researchers (e.g., five studies
examining similar effects with a range of d from 0.20 to 0.35) and then use
the smaller effects for effect size your power analysis.

IMPROVING REPORTING AND INTERPRETATION OF POWER ANALYSIS

Wilkinson and the Task Force for Statistical Inference noted “[b]ecause
power computations are most meaningful when done before data are col-
lected and examined, it is important to show how effect size estimates have
been derived from previous research and theory in order to dispel suspicions
that they might have been taken from data used in the study or, even worse,
constructed to justify a particular sample size (1999, p. 596).” Similarly, the
Publication Manual of the American Psychological Association (2010, p. 30)
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directs authors to “[s]tate how [the] intended sample size was determined
(e.g., analysis of power or precision).” Despite these recommendations, most
manuscripts include no information about power analyses. A cursory review
of recent literature in psychology finds that only a small proportion of stud-
ies addressed power. Researchers are either not conducting power analyses
or reviewers and editors are not encouraging them to report on power.
Among studies that do report power analysis for sample size selection,

there appear to be substantial problems in terms of the quality of the power
analysis. Take this example from a recent article I reviewed. The authors
applied a 2 × 2 between-subjects ANOVA design with predictions about
significant main effects and an interaction. The method section included
the following information about sample size selection: “A sample of 156
participants yields Power= 0.80 for detecting medium sized effects.” In my
experience, a sentence such as this satisfies most readers. However, there are
numerous problems with this declaration. First, why are “medium-”sized
effects interesting? Without a clear justification for why a medium-sized
effect is meaningful, effect size selection appears arbitrary. Second, what
does the “medium effect” refer to? The authors presented predictions for
both main effects and an interaction effect (i.e., three unique null hypothe-
ses). Does this power analysis refer to one main effect, both main effects, the
interaction, or all of the effects? Because there are multiple effects, greater
specificity is necessary. Third, what exactly does a medium effect for an
interaction tell us? Most researchers would be unable to interpret such a
value in practical terms. Ultimately, what is missing from this analysis is
information about why the authors choose a medium effect, the steps they
took to making that determination, and an indication of power for the
specific effects of interest.
These problems likely result from a handful of factors. Conducting power

analyses is very easy given software advances. Simply input a few values
and the computer outputs a result. Unfortunately, without a strong focus on
choosing values to input, the computed result can be meaningless. From my
experiences in editorial roles, when authors present power analyses, there
does not appear to be a great deal of critical evaluation of the analyses pre-
sented by reviewers.

Reporting on Power Analysis. Researchers should detail in their methods
section how they determined effect size for power analysis and all values
used in estimation. The following example is appropriate for a two-group
comparison: To determine sample size requirements, I defined a meaningful
test score difference between the two groups as 5 points on a 100-point
exam. Five points is meaningful as it corresponds to what is typically a half
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of a letter grade. The examination used to test student understanding of
materials is taken from previous courses and typically produces a standard
deviation of 10 points. These values correspond to d = 0.50. The approaches
outlined in Aberson (2010) found a sample of 128 participants (64 per group)
yields power of 0.80 for detecting differences between the two groups with
𝛼 = 0.05.

Power Analysis for Detecting Multiple Effects in the Same Study. Designs with
multiple predictors require attention to power for detecting a set of outcomes
rather than just power for individual predictors. For example, a researcher
conducting a multiple regression analysis with two predictors is often inter-
ested in detecting significant regression coefficients for both of the predictors.
Common approaches to power analyses for studies with multiple predictors
yield an estimate of power for each predictor individually. However, power
for an individual predictor is not the same as power for detecting significance
on both predictors at the same time. Power to detect multiple effects differs
considerably from power for individual effects. In most research situations,
power to detect multiple effects is considerably lower than the power for
individual effects. I term the power to detect all effects in a study as Power
(All). As a simple example, imagine flipping two coins. The probability of
Coin #1 coming up heads is 0.50. The probability of Coin #2 coming up heads
is also 0.50. These values are analogous to the power of each individual pre-
dictor. However, what if we were interested in how likely it was to obtain
heads on both coin flips? This is analogous to being able to reject both null
hypotheses in the same sample. This probability would not be 0.50; it would
be lower (0.25 to be precise). This value is analogous to Power(All). Despite
the relative simplicity of the concept, the lack of attention to Power(All) may
be a primary source of underpowered research in the behavioral sciences
(Maxwell, 2004).
The power to detect a set of effects in a study is a product of the power of the

individual predictors and the correlation between those predictors. Taking
a simple example, if two predictors have Power= 0.80 and are uncorrelated,
Power(All) is simply the product of the two power estimates (0.80*0.80= .64).
This means that a study designed to yield 80% power on both predictors has
only 64% chance to detect both effects.
Another issue affecting Power(All) is the number of predictors in a

study. For example, a study with three predictors that have individual
levels of power of 0.80, would (given uncorrelated predictors) produce
Power(All)= 0.51 (0.8*0.8*0.8). For four predictors Power(All) would be 0.41.
These calculations become more complex when dealing with correlated

predictors. Correlated predictor variables are common inmultiple regression
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and many multivariate techniques. As a general rule, if the predictors relate
to each other in the same manner that they correlate with the DV (e.g., all
positively or all negatively correlated) then stronger correlations among
predictors reduces Power(All).
At present, detecting Power(All) for designs with correlated predictors is

limited as it requires computer-based simulation methods that are often too
complex forwidespread use. However, on the basis of the patterns discussed,
it is reasonable to suggest that when predictors correlate we can get a rough
estimate of Power(All). For example, if there are twopredictorswith power of
0.80 and 0.90, their product (0.80*90) is 0.72. If those predictors correlate in the
same manner as with each other as with the criterion, we expect Power(All)
to be less than 0.72. Although not ideal, this approach does identify situa-
tions where sample size is too small to provide adequate power to detect
multiple effects. An important direction for future work is development of
user-friendly approaches to determining power for detecting multiple pre-
dictors.

UNDERAPPRECIATED INFLUENCES ON POWER AREAS

There are a number of issues that attenuate power through their influence
on effect size. By attenuate power I mean that observed (sample) effect sizes
will be smaller than population effects (i.e., the effects you obtain are smaller
than they should be). As sample effect size goes down, so does power. For
continuously scaled variables, imperfect scale reliability is a common cause
of attenuated effect sizes (i.e., will make correlations and differences in
samples smaller than between the constructs in the population; Hunter &
Schmidt, 1994). Reliability refers to the consistency of a measure. The most
common estimate of power in the behavioral sciences is internal consistency.
Internal consistency addresses how strongly items within a scale relate
to each other. The most common estimate of internal consistency is Cron-
bach’s alpha, a measure that ranges from 0–1.0, with 1.0 indicating perfect
reliability. As an example of the influence of reliability on power, if two
variables correlate in the population at 0.50 but our measures both produce
alpha of 0.80, the observed correlation would average 0.40 (a 20% reduction
in size). If the variables had lower reliability (alpha= 0.50), the observed
correlation would average 0.25. Another issue is artificial dichotomization
of continuously scaled variables. Artificial dichotomization involves taking
a continuous scaled variable (e.g., an item on a 1–100 scale) and breaking
scores into two groups (one above the median, one at or below the median).
Dichotomization through this approach produces reduces observed effect
size by roughly 20% (Hunter & Schmidt, 1990). Similalry, restriction of range
of study variables (i.e., range of values in sample smaller than population)
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also reduces observed effects. Finally, violation of test assumption such
as homogeneity of variance, homoscedasticity, and sphericity often leads
researchers to use tests and adjustments that account for those problems. In
general, these approaches focus on reducing the possibility of type I errors
by making it more difficult to reject the null hypothesis. These approaches
reduce power. If the work in your area tends to suffer from assumption
violations, be sure to account for that with increased sample size to offset
the loss of power (see Aberson, 2010 for applications). Although there is a
good understanding of how these factors impact observed effects, designing
power analyses that address these considerations remains an important area
for future study.
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