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Abstract

In neural systems, form and function are intimately linked; the communication
dynamics across networked areas depends on the organization and integrity
of the connections between them (i.e., axons and tracts). With the growth of
diffusion-weighted imaging (DWI) and fiber tractography tools over the past
decade, it has become possible to visualize the physical architecture of the human
brain at an unprecedented resolution. This information has provided the first
glimpses into the component circuitry supporting cognition, presenting a unique
opportunity for cognitive neuroscientists. For the first time we can visualize the
connections in the living brain, allowing us to measure individual differences in
anatomical connectivity, relate this connectivity to brain function, and gain insights
into the link between white matter architecture and behavior. In many ways, this
technology is still in its infancy and its full potential has not yet been realized.
Here, I outline the importance of understanding neuroanatomical connectivity as a
hard constraint on neural computation. Beginning with an overview of the typical
patterns of connectivity seen in neural systems, I go on to show how current neu-
roimaging tools can visualize several different types of connectivity in the brain. By
highlighting recent findings showing how neuroanatomical organization and brain
function are related during cognitive tasks, I emphasize the utility that structural
brain mapping approaches can have for the broader social and behavioral sciences.

BACKGROUND

Two decades ago, in a commentary to the journal Nature, Francis Crick and
Edward Jones threw down the proverbial gauntlet to the human neuro-
science community. Highlighting the work being done to map the physical
connections in the macaque brain, Crick and Jones lamented that the lack
of such methods in humans fundamentally limits how much we can truly
understand about the brain:

“Without [knowing anatomical connectivity] there is little hope of understand-
ing how our brains work in the crudest way.” (Crick & Jones, 1993).
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Indeed, the organization of white matter pathways within the brain defines
the essential wiring diagram that acts as a hard constraint on neural process-
ing (Felleman&VanEssen, 1991; Passingham, Stephan,&Kötter, 2002).With-
out the knowledge of how the different brain areas are connected together, it
is impossible to truly understand how specific neural computations can lead
to specific cognitive processes.
However,magnetic resonance (MR) physicswas alreadyworking on a tech-

nology that would end up answering their challenge to map the physical
connections in vivo. In fact, 3 years earlier, Michael Moseley and colleagues
had published a series of studies showing how a new form of MRI (mag-
netic resonance imaging) called diffusion-weighted imaging (DWI; Bihan et al.,
1985) could be used to detect directionally dependent water diffusion in the
cat brain (Moseley et al., 1990). Subsequent work would go on to show that
this water is constrained mostly within axons and could be used as a proxy
to describe the geometry of underlying white matter pathways. Thus, by the
time of Crick and Jones’s commentary in Nature, physicists and radiologists
were already working on methods to noninvasively capture the structural
connections in the brain.
Over the past 20 years, DWI has grown to become arguably one of the most

valuable tools in cognitive neuroscience. The increased popularity of DWI
methods is most evident in the steadily increasing number of publications
reporting DWI results over the past decade. According to Pubmed, the num-
ber of publications reporting on results using diffusion tensor imaging (DTI),
the most popular DWI technique in cognitive neuroscience, has risen from
138 publications in 2003 to 1590 publications in 2013.
This accelerated adoption of DWI has led to a number of significant discov-

eries over the past decade. For example, DWI has been used to identify novel
white matter pathways within human brain, such as the connectivity of the
middle longitudinal fasciulus (Makris et al., 2009; Wang et al., 2012) and the
existence of the frontal aslant tract (Catani et al., 2012, 2013). When integrated
with functional magnetic resonance imaging (fMRI), DWI is being used to
map the human connectome and reveal fundamental properties of neural
connectivity in our brains (Bullmore & Sporns, 2009). Clinically, DWI rep-
resents one of the most promising approaches to identifying diffuse axonal
injury from head trauma such as concussion and traumatic brain injury (TBI;
(Huisman et al., 2004)) mainly due to its sensitivity to the directional motion
ofwater, which is disturbed by axonal injury, rather than the density ofwater,
which is measured by typical clinical MRI scans and not affected by axonal
injury.
The most commonway that DWI is used in cognitive neuroscience is in the

evaluation of the microstructural integrity of underlying white matter path-
ways through measures such as fractional anisotropy (FA). These measures
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provide local estimates of the diffusion of water molecules at fixed points in
space, called voxels (short for “volumetric pixels” and reflect the spatial sam-
pling of MRI-based imaging methods), with more restrictive water diffusion
in a specific direction being used as a proxy for the health and integrity of
underlying white matter. As a measure of integrity, these metrics appear to
provide a good index of the health of axons and myelin when examined in
animal studies (Budde, Xie, Cross, & Song, 2009; Klawiter et al., 2011; Song
et al., 2005). Cross-sectional differences in FA are associated with group dif-
ferences in physical health (Bolzenius et al., 2013; Mueller et al., 2011; Stanek
et al., 2011; Verstynen,Weinstein, et al., 2012; Verstynen et al., 2013), neurologi-
cal pathologies (Bihan et al., 2001; Dyrba et al., 2013), and even broader social
factors such as socioeconomic status (Gianaros, Marsland, Sheu, Erickson,
& Verstynen, 2012). But these associations with behavior are not just lim-
ited to predicting differences across individuals. Longitudinal changes in FA
have been associated with learning (Keller & Just, 2009; Sampaio-Baptista
et al., 2013; Scholz, Klein, Behrens, & Johansen-Berg, 2009). These promis-
ing findings, along with the relative conceptual and methodological ease of
voxel-wise measures such as FA, these white matter integrity measures are
quite appealing for awide variety of applications in the social and behavioral
sciences.
However, DWI allows for more than just a local estimate of white matter

integrity. With the increased application of tractography methods to DWI
data (for a review of tractography, see Jbabdi & Johansen-Berg, 2011), it has
become possible tomap a subset of the physical point-to-point connections in
the human brain (Figure 1). This connectivity information is equally impor-
tant to the behavioral scientist as integrity measures such as FA, if not more
so. This is because connectivity analysis allows for visualization of the com-
ponent circuitry of neural systems that regulate a vast number of cognitive
processes (Passingham et al., 2002). As tractography methods continue to
improve, they will be used to ask some of the most fundamental questions
about the human brain and its relation to cognition. In what follows, I high-
light some of themost promising avenues of this structural mappingmethod
for understanding the biological basis of human cognition.

STRUCTURAL CONNECTIVITY AND NEURAL COMPUTATION

In order to conceptualize the utility of neuroanatomicalmapping approaches
for social and behavioral sciences, it is important to understand that the
physical wiring of brain circuits is a hard (i.e., nonmodifiable) constraint on
how information flows through the network. There are two specific ways
that anatomical connectivity can constrain function. First, the organization of
connections between sets of neurons will determine the flow of information
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across the circuit and define the tuning properties (e.g., directional tuning,
receptive fields) of connected units. Second, the integrity of the connections
between two nodes can influence the strength of information transfer within
the circuit. Here, I focus on the utility of organizational patterns in neural
circuits to explain the functional processing related to cognition.
Before going into too much detail about the computational utility of

anatomical connectivity, it is important to first know the general classes of
connections that are seen in the brain. Work in animal systems has revealed
several common connection patterns seen in neural circuits (for an excellent
review of this work, see Thivierge & Marcus, 2007). These patterns include
the following:

Convergence. Many-to-one connections (e.g., corticostriatal systems)
Divergence. One-to-many-connections (e.g., pedunculopontine efferents)
Reciprocity. Symmetrically looped connections (e.g., thalamicocortical

loops)
Lateral Connectivity. Mutual connections within a layer (e.g., retinal gan-

glion cells)
Topography. Point-to-point mappings that preserve spatial and functional

arrangements (e.g., retinotopy of projections from the lateral geniculate
nucleus to the primary visual cortex).

Each of these connectivity patterns contributes to a specific class of compu-
tations (Figure 2). For example, neural networkmodels have shownhow con-
vergent inputs allow for networks to perform information integration from
multiple inputs, such as what happens during sensory integration across
sensory modalities (Denève, Duhamel, & Pouget, 2007; Deneve, Latham, &
Pouget, 2001). On the other hand, lateral connectivity within a layer allows
for stability in local computations (Deneve, Latham, & Pouget, 1999; Deneve,
Pouget, & Latham, 1999; Ma, Beck, Latham, & Pouget, 2006) and provides a
physical architecture that allows for adaptive plasticity within a local circuit
(Verstynen & Sabes, 2011; Wu, Amari, & Nakahara, 2002; Wu & Amari, 2005;
Wu, Chen, Niranjan, & Amari, 2003). Finally, topography constrains the way
that information is represented as it passes from one region to the next and
thus defines the representational structure of the system (Jbabdi, Sotiropou-
los, & Behrens, 2013). The complete class of functional computations that are
constrained by each connectivity pattern is still unknown. Nor is it certain
that this is even an exhaustive list of connectivity patterns (see also Thivierge
& Marcus, 2007). What is certain, however, is that the properties of network
computations are fundamentally limited by how the system iswired together
(Passingham et al., 2002).
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Connectivity
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Figure 2 An example of some of the most common connectivity patterns seen in
neural circuits [see Thivierge and Marcus (2007) for a more detailed description of
these patterns]. The patterns highlighted in the box show patterns that can be
detected using DWI methods.

With the advent of DWI-based fiber tractography algorithms, it has become
possible to virtually map the underlying white matter pathways in the living
human brain and capture some of these connectivity patterns (for a complete
review of DWI, see Hagmann et al., 2006). These algorithms use the geometry
of water diffusion in the brain that is measured with DWI and iteratively
map the likelihood, either probabilistically or deterministically, that any two
voxels in the brain are connected.
While these tools have shown great promise in mapping underlying white

matter pathways, current DWI-based methods can only resolve a subset of
the overall connectivity patterns in the brain. This is largely due to the spatial
resolution of DWI (i.e., millimeters) and the inability to identify the direction-
ality of connections (i.e., it is not possible to tell if a detected connection emits
frompointA to point B or vice versa or both). Nonetheless, fiber tractography
approaches are already providing key insights about brain–behavior associ-
ations linked to two general connectivity patterns: convergence/divergence
connectivity and topography. The functional utility of each pattern is consid-
ered in turn.

INTEGRATION AND SEGREGATION

With current DWI-based tractography methods it is impossible to tell
whether a connection between any three regions reflects a divergent set of
connections, a convergent set of connections, or both. Considered together,
convergence and divergence patterns describe the integration and segre-
gation of information within a circuit. With the adoption of graph-analytic
methods to describe neural connectivity, we now know a lot about the
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general patterns of integration and segmentation within the human brain
(Bullmore & Sporns, 2009; Leergaard, Hilgetag, & Sporns, 2012). These
machine learning analytics summarize how easily information can travel
across brain areas by looking at the paths it takes to get from one area
to the next (Sporns, 2013). These descriptive topology metrics have been
used to identify differences in connectivity patterns in clinical neurological
and psychiatric conditions such as multiple sclerosis, schizophrenia, and
Alzheimer’s disease (for a review of these findings and limitations of clinical
connectometry, see Griffa et al., 2013).
One major limitation of this approach is that it is not clear how these graph

metrics aid our understanding of neural function or map onto cognitive
abilities.
What does a more modular structural network mean for the function of

the system or behavior? How does altered structural connectivity between
groups, for example, sex differences, provide a mechanism for the altered
computations that lead to any behavioral differences seen in these groups?
Metrics of “small worldness” are excellent at providing summary statistics of
network structure, but they are generally agnostic with regard to the under-
lying functions of the network itself.
However, that is not to say that measures of convergence and divergence

have no utility for understanding brain function. In fact, measures of
structural convergence have recently been shown to be useful for predicting
functional activity during face processing (Saygin et al., 2011). While par-
ticipants passively viewed a series of faces, Zeynep Saygin and colleagues
recorded hemodynamic responses across the entire brain using fMRI. They
then estimated the structural connectivity between the fusiform face area
(FFA; a region on the fusiform gyrus with selective responses to faces) and
the rest of the brain using a probabilistic form of tractography that was
applied to DTI data. The pattern of task-related responses in the FFA was
then modeled as a function of the activity in the other brain regions, with
the amount of influence of each brain region determined by the amount of
connectivity they had with the FFA. Compared to several null models, Say-
gin and her colleagues found that a portion of the variance in FFA responses
could be explained by the structural connectivity with other brain areas. This
intriguing finding alludes to the possibility that the degree of convergent
(or reciprocal divergent/convergent pathways) might have some predictive
utility for explaining task-related activity, at least in sensory regions.

TOPOGRAPHY

While convergence and divergence describe the path that information trav-
els across a brain network, topography describes the way that information
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is represented as it travels from region to region. Recently, there has been
a growing interest in resolving topographic patterns of structural connec-
tivity in the human brain. Over the past few years, my colleagues and I, as
well as other researchers, have shown how DWI-based tractography meth-
ods can resolve fine topographic patterns in the human brain. For example,
using diffusion spectrum imaging (DSI), a high-angular resolution form of
DWI, we have shown how it is possible to visualize the somatotopic orga-
nization of corticospinal pathways using DSI (Verstynen, Jarbo, Pathak, &
Schneider, 2011). These pathways are particularly difficult to resolve as they
pass through the midbrain and because they compact into an area of space
about 5mm2 in diameter. Yet, it is still possible to detect the general somato-
topic organization of these fibers using tractography on DSI data (Figure 3a).
More recently, we have shown how this approach can capture both global
(centimeters) and local (millimeters) topographic patterns in corticostriatal
pathways (Verstynen et al., 2012) (Figure 3b). This type of topographic analy-
sis is not particularly specialized toDSI imaging approaches.Work from Iona
Fine’s laboratory has shown how tractography on DTI data can reveal the
retinotopy of the interhemispheric connections in the splenium that connect
the two primary visual cortices (Bock et al., 2013; Saenz & Fine, 2010). This
organization of the callosal pathways only encompasses a few voxels (i.e., a
fewmillimeters) of tissue space, but event at this small distance, tractography
approaches can detect these general patterns. Taken together, these findings
illustrate the utility of DWI-basedmethods at capturing fine topologies at the
macroscopic level in the human brain.
But what informative value does topography have for understanding brain

function or cognition? In functional activity, understanding the topography
of different functional responses can provide clues as to the nature of pro-
cessing that an area does (see Schlerf, Verstynen, Ivry, & Spencer, 2010 for an
example of this in the cerebellum). Recently, Jbabdi and colleagues argued
that similar principles apply when looking at the structural organization
of brain networks (Jbabdi et al., 2013), that is, knowing how information is
organized as it projects from one area to the next can provide insights into
network-level representations.
My colleagues and I looked at how the organization of connections from the

intraparietal sulcus (IPS) could explain patterns of attentional modulation of
the early visual cortex (Greenberg et al., 2012). Using functional localizers, we
mapped out the boundaries of V1, V2, andV3, aswell as the topographic rep-
resentation of spatial attention in the IPS. Using tractography onDSI data, we
then mapped the structural connections between these functionally defined
regions. With a fairly high resolution we were able to confirm that regions of
the posterior IPS that were selective for attending to a specific area of space
were most strongly connected to early visual areas that also attended to that
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Figure 3 (a) Somatotopic organization of the corticospinal projections from the
central sulcus for a single subject. Top inset shows organization of fiber start
points at the cortex and bottom image shows organization of fiber positions in the
crus cerebri of the midbrain. Reprinted from Verstynen et al. (2011). (b)
Organization of corticostriatal projections that originate in the middle frontal gyrus
for a single subject. Coloring reflects position of the fiber start point in the cortex,
with more rostral fibers shown in cooler colors and more caudal fibers shown in
warmer colors. Upper inset shows the fiber start points along the sagittal plane in
the cortex and lower inset shows fiber end points along the sagittal plane in the
striatum. Reprinted from Verstynen, Badre, et al. (2012).
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Figure 4 (a) Position of fiber endpoints (dots) that terminate in functionally
defined regions of the intraparietal sulcus, at the cortical surfus. Colors reflect
functionally defined regions based on a spatial attention mapping paradigm:
attention to upper visual field, blue; attention to lateral visual field, red; attention to
lower visual field, green. (b) Percent BOLD signal change due to attentional
modulation, in six extra striate regions, plotted relative to the number of
anatomical connections from three topographically organized regions in the
anterior intraparietal sulcus (aIPS) and posterior intraparietal sulcus (pIPS). Both
panels reprinted from Greenberg et al. (2012).

area of space. Thus, there was a consistent topography of spatial information
between visual areas in the occipital lobe and attention areas in the parietal
lobe (Figure 4a). More importantly, however, we showed that this topog-
raphy of connectedness positively correlated with the degree of attentional
modulation seen in early visual cortex (Figure 4b). Therefore, the efficiency of
point-to-point organization of connections from the posterior IPS to the early
visual cortex could reflect a potential mechanism for attentional modulation
in the primary visual cortex.

LIMITATIONS

Thus far I have outlined the emerging utility of DWI-based imaging tools
for understanding how the physical architecture of connections in the brain
might constrain brain function. However, there are several important limita-
tions that are, as of yet, unresolved with these DWI approaches.
Bias. In many cases, the tractography output from DWI data is biased

toward detecting connections between gyri (the folds of cortical tissue),
with substantial loss in connectivity to sulcal regions (the wrinkles of
cortical tissue). This significantly limits the scope of connectivity that can be
estimated within the brain.
Artifacts. Just like its cousin method fMRI, there are many sources of noise

in the DWI signal. Many of these sources can bias results toward a spurious
finding between groups. For example, it was recently shown that spurious
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head motion can introduce a change in the FA signal that resembles what
is also seen in demyelination (Yendiki, Koldewyn, Kakunoori, Kanwisher, &
Fischl, 2013). For a comprehensive review of noise sources in DWI, see Jones
& Cercignani, 2010.
Directionality. Currently it is not possible to tell the direction mapped

connections from the DWI signal, that is, if axons are going from region A
to region B or vice versa. Thus, any inferences made from DWI data are
restricted to undirected graphs and networks.
Spatial Resolution. Being an MRI-based method means that the spatial reso-

lution of DWI is on the order of millimeters and centimeters. This is an order
of magnitude higher than the spatial range of individual neurons. As with
the directionality problem, any models or inferences made from DWI data
are restricted to large networks of millions of neurons, rather than local net-
works of dozens of neurons or less.
Mapping to Function. Where possible I tried to highlight findings linking

white matter architecture to either brain function or cognition. However, the
precise mapping between these measures of white matter and functional
properties of brain systems remains elusive. For example, in an integrated
DWI and transcranial magnetic stimulation (TMS) study, DWI-based mea-
sures of corticospinal tract integrity, including FA, were not correlated with
the conduction excitability of the corticospinal pathways when stimulated
with TMS (Hübers, Klein, Kang, Hilker, & Ziemann, 2012). Thus, variability
in FA did not predict individual differences in how signals are propagated
from the motor cortex to the spinal motor neurons. While it is difficult to
make an inference from this null result, it does suggest that the precise
mapping between structure and function using DWI based methods is still
ambiguous.
Validation. Until more studies are done incorporating histological or

microdissection methods with DWI results, it is difficult to know the
false-positive or false-negative rates of tractography data or how measures
such as FA relate to the true number of underlying axons in a voxel.
Despite these limitations, some of which are shared with other neuroimag-

ing methods, DWI still represents the best available tool for mapping white
matter pathways in humans and understanding how they relate to cognition.

PUTTING IT TOGETHER

While DWI is most widely used to measure the integrity of white matter
pathways, tractography approaches are just beginning to allow us to explore
deeper questions about principles of neural organization and how the
specific organization of brain pathways leads to behavior. Current studies
are just beginning to get a handle on the phenomenological relationships



12 EMERGING TRENDS IN THE SOCIAL AND BEHAVIORAL SCIENCES

between structural connections and brain function. One day it may be
possible to go beyond characterizing specific white matter–behavior rela-
tionships and identify the fundamental principles regarding how certain
connection patterns (e.g., convergence, topography) constrain information
processing in neural networks. Knowing these principles can provide a
deeper understanding of the mechanisms by which neural circuits give rise
to cognition.
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